Kevin Doello¹, Cristina Mesas², , Gloria Perazzoli^{2,3}, Laura Cabeza², Raúl Ortíz²

 Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, España.
Servicio de Oncología Médica, Hospital Virgen de las Nieves, Granada
Universidad de Almería (UAL).

Autor de correspondencia: Kevin Doello Correo electrónico: kevindoello@gmail.com

Introducción

El cáncer de pulmón es el cáncer más común en hombres en todo el mundo (1,2 millones, 16,7% del total) con las tasas de incidencia estandarizadas por edad más elevadas en Europa Central y Oriental (53,5 por 100.000) y Asia oriental (50,4 por 100.000). Es la causa más frecuente de muerte por cáncer tanto en hombres como en mujeres, junto con el cáncer de mama. Debido a que los síntomas del cáncer de pulmón a menudo no se manifiestan hasta que la enfermedad está avanzada, solamente un 15% de los casos se detectan en sus etapas iniciales. Este tipo de cáncer suele diagnosticarse entre los 55 y los 75 años, aunque existen casos a partir de los 35 años. Existen diversos subtipos histológicos con pronósticos y tratamientos muy diversos entre sí. Tradicionalmente, el cáncer de pulmón suele clasificarse en microcíticos y no microcíticos. Dentro de este último grupo, se encuentran el epidermoide, adenocarcinoma células grandes. y El tratamiento de cáncer de pulmón se basa radioterapia la cirugía, la en V la quimioterapia, fundamentalmente basada en platinos. En los últimos años han surgido fármacos moleculares y la inmunoterapia con

control de la enfermedad.

Materiales Métodos У Se llevaron a cabo estudios de citotoxicidad del selenito sólo y en combinación con quimioterapia radioterapia mediante V técnicas de proliferación celular por sulforrodamina В ciclo celular. y

Resultados

Se observa pues un efecto de interferencia en la mayor parte de combinaciones. En el caso del DCTXL a 20 µM se puede ver un efecto sumatorio. El selenito a dosis no citotóxicas, en este caso selenito a 3 µM (con una inhibición del 0,7%), detiene a las células en fase G0/G1 con un porcentaje del 69% del total. Por el contrario, el DCTXL a dosis de 1 µM (con una inhibición del 83%) con un porcentaje del 81%, detiene a las células en fase G2/M. La combinación de selenito 3 µM y el DCTXL 1 µM (con una inhibición del 61,4%) también detienen a las células en fase G2/M, en un porcentaje del 88%, teniendo el mismo comportamiento que el uso del DCTXL a 1

Al representar el porcentaje de células en apoptosis con los diferentes tratamientos,

(Figura

importantes tasas de control de respuesta y

ISSN: 2695-3781

μM

solo

2).

Figura 1. A) Viabilidad celular en términos de inhibición relativa (%) de la combinación del selenito sódico y el CDDP a diferentes dosis mediante sulforrodamina B. B) Representación del efecto de la inhibición teórica (combinado teórico) y la inhibición real (combinado real) del selenito con el CDDP.

(figura 3), se aprecia que el uso combinado del selenito 3 μ M (0,5% SubG1) y el DCTXL 1 μ M (83,9% SubG1), provoca un efecto de interferencia, siendo la inhibición menor (50,2%) que el DCTXL per se.

Por tanto, existe un efecto de interferencia en casi todas las combinaciones de CDDP con selenito.

El selenito a dosis no citotóxicas, en este caso selenito a 7 μ M (con una inhibición del 0,34%), detiene a las células en fase G0/G1 con un porcentaje del 58% del total. Por el contrario, el CDDP a dosis de71 μ M (con una inhibición del 3,1%) con un porcentaje del 70%, detiene a las células en fase G2/M. Sin embargo, la combinación de selenito 7 μ M y el CDDP 7 μ M (con una inhibición del 3,3%) detienen a las células en fase S, en un

Figura 2. Distribución celular en cada fase del ciclo celular para el CDDP 7 μ M, Selenito 7 μ M, la combinación entre ambos y el control (sin tratamiento).

ISSN: 2695-3781

Figura 3. Representación de la fase SubG1.

porcentaje del 43%. teniendo un comportamiento diferente a los dos agentes antitumorales por separado (Figura 4).

Al representar el porcentaje de células en apoptosis con los diferentes tratamientos, (figura 5), se aprecia que el uso combinado del selenito 7 µM (0,34% SubG1) y el CDDP 7 µM (3,1% SubG1), provoca un efecto de interferencia, siendo la inhibición igual (3.3%) CDDP el sí mismo. que por

100

90 80

30

20 10 0

relativa (%) 70 60 50

Inhibición 40

B 120

100

Selenito combinado con radioterapia Gy A549 2Gv 4 en а V El selenito a dosis no citotóxicas (3uM) protege a las células de la radiación, excepto a 4Gy a 48h ya que el selenito ha actuado durante un día completo y la dosis de radiación es mayor. El selenito a dosis citotóxicas (7uM, 10uM, 20uM y 30uM) actúa por sí solo sin verse afectado por la dosis de radiación.

Las células radiadas con 2Gy (con una

A549

Figura 4. A) Viabilidad celular en términos de inhibición relativa (%) de la combinación del selenito sódico y el DCTXL a diferentes dosis mediante sulforrodamina B. B) Representación del efecto de la

Figura 5. Distribución celular en cada fase del ciclo celular para el DCTXL 1μM, Selenito 3 μM, la combinación entre ambos y el control (sin tratamiento).

inhibición del 25,37%) detienen las células en fase G0/G1 en un 51%, al igual que las combinaciones con selenito, tanto a 3 μ M en un 68%, como a 7 μ M en un 72%. Las combinaciones presentan una parada de fase similar a las células sin ser irradiadas que también están detenidas en fase G0/G1 en un

68% (Figura 8). Al representar el porcentaje de células en apoptosis con los diferentes tratamientos, (figura 29), se aprecia que el uso combinado del selenito 7 μ M (33.6% SubG1) y el selenito a 3 μ M (0,5% SubG1) con la irradiación a 2 Gy (25,3), provoca un efecto de interferencia, siendo la inhibición menor que los agentes por separado (0,7% y 0,75%

Figura 6. Representación de la fase SubG1.

Figura 7. Viabilidad celular en términos de inhibición relativa (%) de la combinación del selenito sódico y la irradiación a diferentes dosis mediante sulforrodamina B.

Figura 8. Distribución celular en cada fase del ciclo celular para la irradiación a 2 Gy, las combinaciones con selenito 3μ M y 7μ M y el control (sin tratamiento).

respectivamente).

Discusión

El valor de IC50 obtenido en los estudios anteriores para A549 (3-7 µM) es similar al mostrado en los resultados. En cuanto a otras líneas celulares, estudiadas en otros trabaios, tales como líneas celulares de leucemia, linfoma, mesotelioma o carcinoma colorrectal. los valores de IC50 para el selenito se encuentran todos en el margen de entre 5 y 20 иM. En los resultados de ciclo celular hemos podido contrastar que tanto el CDDP como el DCTXL detienen a las células en fase G2/M. El selenito por su parte las detiene en fase S logra elevados valores cuando de citotoxicidad celular. La interferencia entre selenito, y DCTXL y CDDP podría deberse a que estos agentes al detener a ls células en fase G2/M dificultarían la acción del selenito

Conclusión

Como conclusión el selenito sódico presenta una potente actividad antitumoral solo en la línea celular de adenocarcinoma de pulmón A549r. Sin embargo, las combinaciones con quimioterapia basada en CDDP y DCTX han resultado en un efecto de interferencia así como las combinaciones con RT.

Bibliografía

1. Mehdi Y, Hornick J, Istasse L, Dufrasne I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules. 2013;18(3):3292-311.

Pechová A, AntošováL, 2. Pavlata L. Podhorský A. Effect of sodium selenite or lactateprotein selenium complex supplementation on selenium status in goat kids. Czech J Anim Sci. 2016;60(1):16-24. 3. Faixová Z, Piešová E, Maková Z, Čobanová K, Faix Š. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on ruminal enzyme activities and blood chemistry in sheep. Acta 2016;85(2):185-94. Vet Brno 4. White S, Johnson S, Bobel J, Warren L. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle. J Anim 2016;94(7):2867. Sci. 5. Jokic G, Vuksa M, Djedovic S, Stojnic B, Kataranovski D, Kljajic P et al. Rodenticide efficacy of sodium selenite baits in laboratory conditions. Arch Biol Sci. 2014;66(3):1083-9. 6. McAdam PA, Levander OA. Chronic toxicity and retention of dietary selenium fed to rats as D- or L-selenomethionine, selenite, or selenate. Nutr Res. 1987;7(6):601-10. 7. Satoh M, Naganuma A, Imura N. Effect of coadministration of selenite on the toxicity and antitumor activity ofcisdiamminedichloroplatinum(II) given repeatedly to mice. Cancer Chemother Pharmacol. 1992;30(6):439-43.

8. Noori S. Sodium selenite attenuated cisplatin-induced toxicity in rats: role of electrolytes homeostasis. - PubMed - NCBI [Internet]. Ncbi.nlm.nih.gov. 2015 [cited 20 June 2017]. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/22013747.

9. Spyrou G et al. Selenite and selenate inhibit human lymphocyte growth via different mechanisms. - PubMed - NCBI [Internet]. Ncbi.nlm.nih.gov. 2015 [cited 20 June 2017]. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/8813134.

10. Olm E, Jönsson-Videsäter K, Ribera-Cortada I, Fernandes A, Eriksson L, Lehmann S et al. Selenite is a potent cytotoxic agent for human primary AML cells. Cancer Lett. 2009;282(1):116-23.

11. Olm E. Cytotoxic mechanisms of selenium Karolinska Institutet: cancer. 2015. in 12. Park S, Kim J, Chi G, Kim G, Chang Y, Moon S et al. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of species. Toxicol reactive oxygen Lett. 2012;212(3):252-61.